微针经皮给药系统及其创伤修复与药理学研究进展

蒙礼娟, 乔建雄, 林沛婷, 张选奋

中国药学杂志 ›› 2017, Vol. 52 ›› Issue (6) : 434-437.

PDF(1080 KB)
PDF(1080 KB)
中国药学杂志 ›› 2017, Vol. 52 ›› Issue (6) : 434-437. DOI: 10.11669/cpj.2017.06.002
综述

微针经皮给药系统及其创伤修复与药理学研究进展

  • 蒙礼娟, 乔建雄, 林沛婷, 张选奋*
作者信息 +

Microneedle Percutaneous Drug Delivery System,Wound Repair and Pharmacology Evaluation

  • MENG Li-juan, QIAO Jian-xiong, LIN Pei-ting, ZHANG Xuan-fen*
Author information +
文章历史 +

摘要

经皮给药方式有患者的依从性高、主药缓释、避免胃肠道刺激和肝脏的首关效应等独特优势,但皮肤的屏障作用阻止大分子药物渗透进入皮肤组织。阵列样排列的微针穿刺表皮层形成微米级孔道,可显著提高大分子物质透过皮肤的能力。近年来,微针的类型和使用方法有较大进展。笔者着重介绍微针透皮给药系统及其创伤修复与药理学效应研究进展。

Abstract

Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, the skin barrier function limits the transdermal penetration of macromolecular drugs.Microneedle arrays can remarkably increase the skin permeability for drugs, especially macromolecular drugs, by forming microchannels in the skin. In recent years, the types and usages of microneedle have made great progress. This review focuses on remarking the wound repair and pharmacology evaluation, as well as introduces the microneedle percutaneous drug delivery system.

关键词

经皮给药 / 皮肤屏障功能 / 微针 / 创伤愈合

Key words

transdermal drug delivery / skin barrier function / microneedle / wound healing

引用本文

导出引用
蒙礼娟, 乔建雄, 林沛婷, 张选奋. 微针经皮给药系统及其创伤修复与药理学研究进展[J]. 中国药学杂志, 2017, 52(6): 434-437 https://doi.org/10.11669/cpj.2017.06.002
MENG Li-juan, QIAO Jian-xiong, LIN Pei-ting, ZHANG Xuan-fen. Microneedle Percutaneous Drug Delivery System,Wound Repair and Pharmacology Evaluation[J]. Chinese Pharmaceutical Journal, 2017, 52(6): 434-437 https://doi.org/10.11669/cpj.2017.06.002
中图分类号: R944    R965   

参考文献

[1] ARORA A, PRAUSNITZ M R, MITRAGOTRI S. Micro-scale devices for transdermal drug delivery[J]. Int J Pharm, 2008,364(2):227-236.
[2] TUAN-MAHMOOD T M, MCCRUDDEN M T, TORRISI B M, et al. Microneedles for intradermal and transdermal drug delivery[J]. Eur J Pharm Sci, 2013,50(5):623-637.
[3] BAL S M, DING Z, VAN RIET E, et al. Advances in transcutaneous vaccine delivery: do all ways lead to Rome?[J]. J Controlled Release, 2010,148(3):266-282.
[4] HARDING C R. The stratum corneum: structure and function in health and disease[J]. Dermatologic Therapy, 2004,17(suppl 1):6-15.
[5] MAIBACH H. Dermatological formulations: percutaneous absorption[J]. J Pharm Sci, 1984,73(4):573.
[6] TAGAMI H, KOBAYASHI H, ZHEN X S, et al. Environmental effects on the functions of the stratum corneum[J]. J Invest Dermatol Symposium Proc, 2001,6(1):87-94.
[7] MOORE T L, LUNT M, MCMANUS B, et al. Seventeen-point dermal ultrasound scoring system--a reliable measure of skin thickness in patients with systemic sclerosis[J]. Rheumatology, 2003,42(12):1559-1563.
[8] ZHANG X J, HE C D, LU H G. Dermatovenereology(皮肤性病学)[M]. Vol 7. Beijing: People's Medical Publishing House,2008:5.
[9] CHEN J, CHEN Z P, QU M M. Application of microneedles in transdermal drug delivery[J]. Int J Pharm Res(国际药学研究杂志), 2011,38(2):142-147.
[10] WIECHERS J W. The barrier function of the skin in relation to percutaneous absorption of drugs[J]. Pharm Weekblad Sci Ed, 1989,11(6):185-198.
[11] EL-DOMYATI M, BARAKAT M, AWAD S, et al. Multiple microneedling sessions for minimally invasive facial rejuvenation: an objective assessment[J]. Int J Dermatol, 2015,54(12):1361-1369.
[12] LI W Z, ZHANG H, HAN W X, et al. Study on the safety of solid microneedles for transdermal drug delivery[J]. Chin Pharm J(中国药学杂志), 2011,46(23):1818-1822.
[13] BOS J D, MEINARDI M M. The 500 dalton rule for the skin penetration of chemical compounds and drugs[J]. Exper Dermatol, 2000,9(3):165-169.
[14] HARVEY A J, KAESTNER S A, SUTTER D E, et al. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs[J]. Pharm Res, 2011,28(1):107-116.
[15] LIU S, JIN M N, QUAN Y S, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin[J]. J Controlled Release, 2012,161(3):933-941.
[16] CHEN M C, LING M H, KUSUMA S J. Poly-gamma-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin[J]. Acta Biomater, 2015,24(15):106-116.
[17] KIM M C, LEE J W, CHOI H J, et al. Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection[J]. J Controlled Release, 2015,210(1):208-216.
[18] HIROBE S, AZUKIZAWA H, HANAFUSA T, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch[J]. Biomaterials, 2015,57(22):50-58.
[19] DAUGIMONT L, BARON N, VANDERMEULEN G, et al. Hollow microneedle arrays for intradermal drug delivery and DNA electroporation[J]. J Membrane Biol, 2010,236(1):117-125.
[20] DENG Y, CHEN J, ZHAO Y, et al. Transdermal delivery of siRNA through microneedle array[J]. Scientific Reports, 2016,6(1):21422.
[21] YAN G, WARNER K S, ZHANG J, et al. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery[J]. Int J Pharm, 2010,391(1-2):7-12.
[22] MILEWSKI M, PAUDEL K S, BROGDEN N K, et al. Microneedle-assisted percutaneous delivery of naltrexone hydrochloride in yucatan minipig: in vitro-in vivo correlation[J]. Molecular Pharm, 2013,10(10):3745-3757.
[23] VERBAAN F J, BAL S M, VAN DEN BERG D J, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin[J]. J Controlled Release, 2007,117(2):238-245.
[24] HAQ M I, SMITH E, JOHN D N, et al. Clinical administration of microneedles: skin puncture, pain and sensation[J]. Biomed Microdevices, 2009,11(1):35-47.
[25] KALLURI H, KOLLI C S, BANGA A K. Characterization of microchannels created by metal microneedles: formation and closure[J]. The AAPS J, 2011,13(3):473-481.
[26] NAGUIB Y W, KUMAR A, CUI Z. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil[J]. Acta Pharm Sin B(药学学报B), 2014,4(1):94-99.
[27] WERMELING D P, BANKS S L, HUDSON D A, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans[J]. Proc Nati Acad Sci, 2008,105(6):2058-2063.
[28] BANKS S L, PAUDEL K S, BROGDEN N K, et al. Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin[J]. Pharm Res, 2011,28(5):1211-1219.
[29] KUSAMORI K, KATSUMI H, SAKAI R, et al. Development of a drug-coated microneedle array and its application for transdermal delivery of interferon alpha[J]. Biofabrication, 2016,8(1):015006.
[30] GUPTA J, PARK S S, BONDY B, et al. Infusion pressure and pain during microneedle injection into skin of human subjects[J]. Biomaterials, 2011,32(28):6823-6831.
[31] GRISS P, STEMME G. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer[J]. J Microelectromechanical Sys, 2003,12(3):296-301.
[32] WANG P M, CORNWELL M, HILL J, et al. Precise microinjection into skin using hollow microneedles[J]. J Invest Dermatol, 2006,126(5):1080-1087.
[33] KALLURI H, BANGA A K. Formation and closure of microchannels in skin following microporation[J]. Pharm Res, 2011,28(1):82-94.
[34] KATSUMI H, LIU S, TANAKA Y, et al. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats[J]. J Pharm Sci, 2012,101(9):3230-3238.
[35] DANGOL M, YANG H, LI C G, et al. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles[J]. J Controlled Release, 2016,223(1):118-125.

基金

兰州大学医学科研基金资助项目( LZUYX200822)
PDF(1080 KB)

Accesses

Citation

Detail

段落导航
相关文章

/